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Abstract This paper presents a (10 + ε)-approximation algorithm to compute
minimum-weight connected dominating set (MWCDS) in unit disk graph. MWCDS
is to select a vertex subset with minimum weight for a given unit disk graph, such that
each vertex of the graph is contained in this subset or has a neighbor in this subset.
Besides, the subgraph induced by this vertex subset is connected. Our algorithm is
composed of two phases: the first phase computes a dominating set, which has ap-
proximation ratio 6 + ε (ε is an arbitrary positive number), while the second phase
connects the dominating sets computed in the first phase, which has approximation
ratio 4.

Keywords Wireless network · Connected dominating set · Unit disk graph

1 Introduction

1.1 Dominating set problem in general graphs

Minimum Dominating Set Problem (MDS) is a famous optimization problem in
graph theory. It is widely used in many fields such as wireless network. The for-
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mal definition of this problem is: Given an undirected graph G = (V ,E), we want
to find a subset D ⊆ V of its vertices with minimum number, such that for each ver-
tex in V , it is either in D or has a neighbor in D. Then D is a dominating set of
G. If we assign each vertex a weight, which is motivated by applications in wire-
less ad-hoc networks (e.g., nodes in a wireless ad-hoc network have different lim-
ited energies), our problem will become Minimum Weighted Dominating Set Prob-
lem (MWDS). The formal definition is: Given an undirected graph G = (V ,E,W),
where W is the weight set for V , we want to find a minimum weighted dominating
set D ⊆ V .

In network transmission process, it is not enough to only select minimum weighted
dominating set. Each node should also be able to communicate with any other node
in the graph. Therefore, we need Minimum Weighted Connected Dominating Set
Problem (MWCDS): find a dominating set D ⊆ V , such that the subgraph induced
by D is connected.

Garey and Johnson (1979) showed that MDS is N P -hard. In fact, MDS for gen-
eral graphs is polynomially equivalent to the Set Cover problem (Bar-Yehuda and
Moran 1984). Therefore, no polynomial time algorithm can achieve an approxi-
mation ration better than O(logn) (Vazirani 2001) (n is the number of vertices in
graph), unless N P ⊆ DTIME[nO(log logn)] (Feige 1996). Till now, the best known
approximation ratio for MWCDS in general graphs is O(logn) (Guha and Khuller
1999).

1.2 Dominating set problem in unit disk graph

In this paper we mainly concern MWDS and MWCDS in Unit Disk Graph (UDG).
A Unit Disk Graph is a graph in which each vertex is associated with a unit disk in
the plane. For a given UDG G, we use d to denote a unit disk (which also means
the center of this disk. To distinguish the two expressions, we will call center d or
disk d). Two vertices are adjacent (or there’s an edge between two vertices) if and
only if their corresponding unit disk intersect each other. In another word, if d1 and
d2 are adjacent, we will have dist(d1, d2) ≤ 2. Therefore, we can increase the radius
of the d1 and d2 from 1 to 2 and obtain an equivalent statement: if d1 and d2 are
adjacent, then the center of d2 will locate inside disk d1, or d1 will cover d2 (and
vice versa). In the following sections, we will use disks with radius 2 for conve-
nience.

A disk d1 is said to dominate (or be dominated by) another disk d2, if d1 and
d2 are adjacent in G. A vertex set D of a graph G is said to be a dominating set
if every vertex in G is either in D or is dominated by a vertex in D. A dominat-
ing set D is connected if G[D], the subgraph of G induced by D, is connected.
Then our problem is just to find a minimum weighted connected dominating set in G

(MWCDS).
The motivation to study dominating sets in unit disk graphs comes from wireless

ad-hoc networks, where dominating sets have been proposed for the construction of
routing backbones (Dai et al. 2002). Each node of the graph represents a wireless
device, and two hosts, located closely together within wireless transmission range of
each other, are connected by an edge representing that they can communicate with
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each other. Besides, a message that is broadcasted by all nodes of a dominating set
should be received by the whole network. Therefore, a small connected dominating
set is an energy-efficient routing backbone (Wu and Li 1999). Recent work has em-
phasized that ad-hoc networks are often heterogeneous since different nodes have
different capabilities. Therefore it is meaningful to assign weights to the nodes (e.g.,
assign small weight to nodes with a large remaining battery life) and aim to determine
a (connected) dominating set of minimum weight (Wang and Li 2005).

Clark et al. (1990) proved that MDS is N P -hard for UDG, and Lichtenstein
(1982) showed that MCDS is N P -hard for UDG. Marathe et al. (1995) gave
constant-factor approximation algorithms for MDS and MCDS in UDG. Besides,
for MDS in UDG, a PTAS was presented by Hunt III et al. (1998), based on the shift-
ing strategy (Baker 1994; Hochbaum and Maass 1985). For the weighted version,
Ambühl et al. (2006) gave a constant-factor approximation algorithm for MWCDS in
UDG with approximation ratio 89.

1.3 Our result

This paper presents an approximation algorithm for MWCDS problem. The whole
algorithm can be divided into two phases. Phase I shows an approximation algorithm
to find a MCDS for a given UDG G. This algorithm use two strategies: Using Dy-
namic Programming to select Dominating Set for a strip; Enumerating all possible
condition and then using shifting to eliminate the boundary influence. The whole ap-
proximation ratio of Phase I is 6 + ε, which is the smallest approximation algorithm
for MWCDS in UDG.

Phase II uses an approach based on a minimum spanning tree calculation to add
disks to the solution in order to make the dominating set connected. It yields a
4-approximation algorithm to connect the dominating set. Therefore, the whole ap-
proximation ratio of our algorithm is 6 + ε + 4 = 10 + ε, where ε is an arbitrary
positive number.

The structure of our paper is as follows. Section 2 discusses about the Phase I of
the whole algorithm, including three subsections to illuminate the algorithm step by
step. It also contains shifting strategy and proof of approximation ratio. Section 3
mainly exhibits the 4-approximation algorithm to find additional disks and connect
dominating set which is selected by Phase I. And lastly, Sect. 4 gives final conclusion
and future works for the approximation algorithms.

2 Computing minimum weight dominating set

In this section we present an approximation algorithm to the Minimum Weight Dom-
inating Set Problem (MWDS) with performance ratio 6 + ε. We firstly partition the
plane into squares, and then select a dominating subset within a region of K × K

squares (K is a given constant). Lastly we combine each subset together, forming a
dominating set for the whole plane. To make convenience, we choose K to be an even
number. Using shifting policy, we do previous processes K

2 −1 times, and choose the
minimum solution as our final result.



182 J Comb Optim (2009) 18: 179–194

2.1 Partition

Given a UDG G containing n disks in the plane. Let μ <
√

2 be a real number which
is sufficiently close to

√
2, say μ = 1.4. Partition the area into squares with side

length μ. If the whole area has boundary P(n)×Q(n), where P(n) and Q(n) are two
polynomial functions on n, then given the integer even constant K , and let K × K

squares form a Block, our partition will have at most (�P(n)
K

� + 1) × (�Q(n)
K

� + 1)

Blocks. We will discuss algorithm to compute minimum weight dominating subset
for each block firstly, and then combine them together.

2.2 MWDC in K × K squares

Assume each Block B has K2 squares Sij , for i, j ∈ {0,1, . . . ,K − 1}. Let Vij be
the set of disks in Sij . If we have a dominating set D for this Block, then for each
square Sij , it’s corresponding dominating set is (1): either a disk from inside Sij (since
dist(d, d ′) ≤ 2 for any two disks within this square), or (2): a group of disks from
neighbor region around Sij , the union of which can cover all disk centers inside the
square. Then if we want to select minimum weight dominating set, for each square we
will have two choice. However, instead of selecting dominating set square by square,
we hope to select them strip by strip to avoid repeated computation for some disks.
For this purpose, we have the following lemmas.

Lemma 1 (Ambühl et al. 2006) Let P be a set of points located in a strip between
lines y = y1 and y = y2 for some y1 < y2. Let D be a set of weighted disks with
uniform radius whose centers are above the line y = y2 or below the line y = y1.
Furthermore, assume that the union of the disks in D covers all points in P . Then a
minimum weight subset of D that covers all points in P can be computed in polyno-
mial time.

The proof of result for Lemma 1 is in fact constructive. It gives a polynomial time
algorithm by dynamic programming. It says that as long as the set of centers P in a
horizontal strip can be dominated by a set of centers D above and/or below the strip,
then an optimal subset of D dominating P can be found in polynomial time.

Our next work is to select some disks for each square within a strip so that those
disks can be covered by disks from the upper and lower strips. To better illumi-
nate the strategy, we divide the neighbor parts of Sij into eight regions UL,UM,
UR,CL,CR,LL,LM,LR as shown in Fig. 1. The four line forming Sij are x = x1,
x = x2, y = y1 and y = y2. Denote by Left = UL ∪ CL ∪ LL, Right = UR ∪ CR ∪ LR,
Up = UL ∪ UM ∪ UR, Down = LL ∪ LM ∪ LR. After that, we will have Lemma 2.

Lemma 2 Suppose p ∈ Vij is a disk in Sij which can be dominated by a disk d ∈ LM.
We draw two lines pl and pr , which intersect y = y1 by angle π

4 and 3π
4 . Then the

shadow PLM surrounded by x = x1, x = x2, y = y1, pl and pr (shown in Fig. 2) can
also be dominated by d . Similar results can be hold for shadow PUM , PCL and PCR,
which can be defined with a rotation.
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Fig. 1 Sij and its neighbor
regions

Fig. 2 Different shape for
shadow PLM

Proof We split shadow PLM into two half with vertical line x = xp , where xp is
x-coordinate of disk p. Then we prove that the right half of PLM can be covered
by d . The left half can be proved symmetrically. Let o be intersection point of x = xp

and y = y1, a that of pr and x = x2 (or pr and y = y1), and b that of x = x2 and
y = y1. Intuitionally, the right half can be either a quadrangle pabo or a triangle pao.
We will prove both cases as follows.

Quadrangle case Draw the perpendicular line of the line segment pa, namely pm.
When d is under pm as in Fig. 3a, we will have dist(d, a) ≤ dist(p, d) ≤ 2. Besides,
it is trivial that dist(d, o) and dist(d, b) are all < 2. Thus d can cover the whole
quadrangle. When d is above the line pm as in Fig. 3b, we draw an auxiliary line
y = ya parallel with y = y1, and x = xd intersecting y = ya at point c. Since d lies
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Fig. 3 Shape of shadow and
location of d

above pm, ∠cad ≤ π/4, and thus

dist(d, a) = dist(c, a)

cos∠cad
<

√
2

cos π
4

= 2.

Note that both dist(d, o) and dist(d, b) are less than 2, d can cover the whole quad-
rangle.

Triangle case Similarly, draw pm as above. The proof remains when d is under
pm (see Fig. 3c). When d is above pm as in Fig. 3d, we draw auxiliary line x = xd

intersecting y = y1 at c. Then we will get the same conclusion. �

With help of Lemma 2, we can select a region from Sij , where the disks inside
this region can be covered by disks from Up and Down neighbor area. We name this
region as “sandglass”, with formal definition as follows:

Definition 1 (Sandglass) If D is a dominating set for square Sij and D ∩ Vij = ∅,
then there exists a subset VM ⊆ Vij which can only be covered by disks from UM
and LM (we can set VM = ∅ if there’s no such disks). Choose VLM ⊆ VM the disks
that can be covered by disks from LM, draw pl and pr line for each p ∈ VLM . Choose
the leftmost pl and rightmost pr and form a shadow similar as that in Lemma 2.
Symmetrically, choose VUM and form a shadow with leftmost and rightmost lines.
The union of the two shadows form a “sandglass” region Sandij of Sij . (See Fig. 4a,
where solid circle represents VLM , while hollow circle represents VUM) Fig. 4b, c, d
give other possible shapes of Sandij .
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Fig. 4 Sandglass Sandij for Sij

Lemma 3 Suppose D is a dominating set for Sij , and Sandij ’s are chosen in the
above way. Then any disks in Sandij can be dominated by disks only from neighbor
region Up ∪ Down, and disks from Sij \ Sandij can be dominated by disks only from
neighbor region Left ∪ Right.

Proof Suppose to the contrary, there exits a disk d ∈ Sandij which cannot be dom-
inated by disks from Up ∪ Down. Since D is a dominating set, there must be a
d ′ ∈ CL ∪ CR which dominates d . Without loss of generality, assume d belongs
to lower half of the sandglass which is formed by p1 and p2, and let d ′ ∈ CL (see
Fig. 5). Based on our assumption, d cannot locate in p1’s triangle shadow to Down
region (otherwise since p1 can be dominated by a disk from LM, d can also be dom-
inated by this disk). We then draw dl and dr to CL region and form a shadow to CL.
Then by Lemma 2 every disk from this shadow can be dominated by d ′. Obviously
p1 belongs to this region, but p1 is a disk which cannot be dominated by disks from
CL, a contradiction. �

Till now we already find “sandglass” region in which disks can be dominated
by disks only from Up and Down regions. In our algorithm, for each square Sij ,
we can firstly decide whether to choose a disk inside this square as dominating set,
or to choose a dominating set from its neighbor region. If we choose latter case,
the algorithm will randomly select 4 disks d1, d2, d3 and d4 from Sij and make
corresponding sandglass (we can also choose less than 4 disks to form the sandglass).
By enumeration of all possible sandglasses including the case of choosing one disk
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Fig. 5 Proof for sandglass

Fig. 6 Block selection

inside the square, for all squares within K × K area, there are at most [∑4
i=0 Ci

n ·
2i]K2

choices (n is the number of disks), which can be calculated within polynomial
time. Besides, when consider choosing dominating set from neighbor regions, we
should also include regions around this K ×K areas such that we will not miss disks
outside the region. Therefore, we should consider (K + 4)× (K + 4) area, where the
inner region is our selected block and the surrounding four strips are the assistance
(shown as Fig. 6).

Algorithm 1: Calculate MWDS in K × K squares

Step 1 For each Sij , choose its sandglass or select a d ∈ Sij .
Step 2 If d ∈ Sij is selected, then remove d and all disks

dominated by d .
Step 3 For each strip

⋃K
j=1 Sij from i = 1 to K , calculate

dominating set for the union of disks in the sandglasses.
Step 4 For each strip

⋃K
i=1 Sij from j = 1 to K , calculate

dominating set for the remaining disks not covered by Step 3.
The Union of disks chosen in the above steps form a MWDS for K × K squares.

2.3 MWDC for the whole region

As discussed above, if our plane has size P(n) × Q(n), then there are at most
(�P(n)

K
� + 1) × (�Q(n)

K
� + 1) Blocks in the plane. We name each block Bxy , where

0 ≤ x ≤ �P(n)
K

� + 1 and 0 ≤ y ≤ �Q(n)
K

� + 1. Then, using Algorithm 1 to calculate
dominating set for each block, and by combining them together, we obtain a domi-
nating set for our original partition.
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Fig. 7 Move blocks

Next, we move our blocks to different positions by shifting policy. Move every
block two squares right and two squares up to its original position, which can be seen
from Fig. 7. Then calculate dominating set for each block again, and combine the
solution together. We do this process K

2 times, choose the minimum solution as our
final result. The whole process can be shown as Algorithm 2.

Algorithm 2: Calculate MWDS for the whole plane

Step 1 For a certain partition, calculate MWDS for each block Bxy ,
sum the weight of MWSD for each block and form a solution.

Step 2 Move each block to two squares to the right and two squares
to the top of the original block.

Step 3 Repeat Step 1 for new partition, get a new solution.
Step 4 Repeat Step 2 for �K

2 � times, and
choose the minimum solution among those steps.

The solution from Step 4 is our final result.

2.4 Performance ratio

In the following, we extend our terminology ‘dominate’ to points (a point is a location
which is not necessarily a disk). A point p is dominated by a set of disks if the
distance between p and at least one center of the disks is not more than 2. We say
an area is dominated by a set of disks if every point in this area is dominated by the
set of disks. Let OPT be optimal solution for our problem and w(OPT) the weight of
optimal solution.

Theorem 1 Algorithm 2 always outputs a dominating set with weight within 6 + ε

times of the optimum one.

Proof Our proof mainly has two phases. The first phase analyzes that our Algorithm 1
gives a 6-approximation for disks in K × K squares. The second phase proves that
result from algorithm 2 is less than (6 + ε) · w(OPT).

Phase 1 If a disk has radius 2, and our partition has side length μ <
√

2, then
a disk may dominate disks from at most 16 squares, which can be shown from
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Fig. 8 An example for disk
cover region

Fig. 8. Simply, if a disk in OPT is used to dominate the square it belongs to, then
we will remove this disk before calculating MWDS for strips. Therefore it will be
used only once. If a disk is not used to dominate the square containing it, then it
may be used 3 times in calculating its 3 horizontal neighbor strips (H1, H2 and H3

as shown in Fig. 8), and another 3 times in calculating its 3 vertical neighbor strips
(V1, V2 and V3 in Fig. 8). Therefore, Algorithm 1 is a 6-approximation for each
block.

Phase 2 Now we consider the disks in side strips for a block. As discussed above,
when calculating MWDS for a strip, we may use disks within (K + 2) × (K + 2)

squares. Therefore, we can divide a block B(xy) into three kinds of squares, just as
shown in Fig. 9 (0 ≤ x ≤ �P(n)

K
�, and 0 ≤ y ≤ �Q(n)

K
�). If a disk belongs to inner

part A of B(xy), it will be used at most 6 times during calculating process. We name
those disks as din. If a disk belongs to side part B of B(xy), it may be used at most 5
times for calculating B(xy), but it may used at most 4 times when calculating B(xy)’s
neighbor block. We name those disks as dside. If a disk belongs to corner squares C
of B(xy), it may be used at most 4 times for calculating B(xy), and at most 8 times for
neighbor blocks. We name those disks as dcorner . In addition, we know that during
shifting process a node can stay at most 4 times in side or corner square. If we name
l as the lth shifting, then our final solution will have the following inequality:

W(Solution) = min
l

{∑

Soll

[6w(d l
in) + 9w(d l

side) + 12w(d l
corner)]

}
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Fig. 9 Divide block B(xy) into
3 parts

≤ 1
K
2

K
2∑

l=0

{
6w(d l

in) + 4 · 12w(d l
side + d l

corner)
}

= 6w(OPT) + 42
K
2

w(OPT)

≤ (6 + ε)w(OPT)

where ε = 42/K
2 can be arbitrarily small when K is sufficiently large. �

3 Connected dominating set

Having computed a dominating set D of G, the subgraph of G induced by D, denoted
by G[D], is not necessarily connected. The vertex set of a connected component of
G[D] is called a cluster of D, and the vertices in D are called in-centers, vertices in
V (G) \ D are called out-centers. In the following, we are to add some out-centers to
D such that the resulting new dominating set induces a connected subgraph of G.

A path P is said to connect two clusters C1 and C2 if the two ends of P are in C1
and C2 respectively and all internal vertices d1, . . . , dt of P are out-centers. Denote
such a path by C1d1 . . . dtC2. The weight of P is w(P ) = ∑t

j=1 w(dj ).
Suppose C is the set of clusters of D. Construct an auxiliary graph H as follows:

The vertices of H correspond to the clusters in C ; For every path P of length at most
3 in G which connects a cluster C1 ∈ C to another cluster C2 ∈ C , add an edge e

between C1 and C2, the out-centers on P are said to define e, the weight of e is the
sum of the weights of the out-centers defining e.

Algorithm 3: Connect clusters into MWCDS

Step 1 Construct the auxiliary graph H as described above. Set D1 = D.
Step 2 Compute a minimum spanning tree T of H .
Step 3 For each edge e ∈ E(T ), add the out-centers defining e to D1.
The solution from Step 3 is our final result.
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Fig. 10 The left is a disk of Type 2, the right is a disk of Type 5

We are to show that the total weight of the set of added out-centers is within 4 times
of the optimal CDS. For this purpose, we need more terminologies. For a point d in
the plane, denote by C(d,2) the disk with center d and diameter 2. For a set of centers
U , we say that a center d (or the corresponding disk d) is of Type 1 with respect to U

if there exists exactly one ‘imaginary’ point d ′ ∈ C(d,2) such that d is the only center
in U which lies in the area C(d,2) ∩ C(d ′,2); for 2 ≤ i ≤ 5, a center d is of Type i

with respect to U if there are exactly i imaginary points d1, . . . , di ∈ C(d,2) such that
∠dj1ddj2 > π/3 for any j1, j2 ∈ {1, . . . , i} and j1 �= j2, and for each j ∈ {1, . . . , i},
d is the only center in U which lies in C(d,2) ∩ C(dj ,2). A center d which does not
belong to any of the above five types is said to be of Type 0 with respect to U . The
circles in Fig. 10 are two disks of Type 2 and Type 5 respectively, where solid points
are centers of disks and small circles are ‘imaginary’ points, big dashed circles are
the imaginary disks whose centers are the small circles. The idea of such a definition
is that for a disk d , the larger the ‘blank’ area (no centers in this area is needed to
be covered by disk d) is, the times that disk d is used repeatedly to connect different
clusters is less.

A set of clusters C is said to be connected through a set of centers U if adding U

to the center set of C results in a connected graph.

Lemma 4 Let G be a connected graph, D be a dominating set of G, C be the set
of clusters of D, and U be a set of centers such that C can be connected through U .
Then there exists a set of paths P in G such that

(1) C is connected through paths in P ,
(2) each path in P is of length at most 3 in G, and
(3) w(P ) ≤ 4w(V0)+3w(V1)+2w(V2)+w(V3), where Vi ⊆ U is the set of centers

of Type i with respect to U .

Proof It can be assumed that U does not contain any center in C . We prove the lemma
by induction on |U |.

If |U | = 0, then C contains only one cluster, and the result is obviously true.
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Fig. 11 The subgraph G′ of G

If |U | = 1, suppose U = {d}. If d ∈ Vi , then |C| ≤ 5 − i. Suppose C =
{C1, . . . ,C|C|}. Let P = {P1, . . . ,P|C|−1} where Pj = CjdCj+1 (j = 1, . . . , |C| − 1).
Then P clearly satisfies conditions (1), (2), and condition (3) follows from w(P ) =
(|C| − 1)w(d) ≤ (4 − i)w(Vi).

Next, suppose |U | = k ≥ 2 and the result holds for smaller set of centers.
Let d be a center in U with the minimum weight. For a center d ′ and a cluster

C ∈ C , denote by dist(d ′,C) = min{dist(d ′, c) | c ∈ C}. We construct a subgraph G′
of G by specifying the adjacency of centers in C(d,2): For each cluster C ∈ C with
C ∩ C(d,2) �= ∅, join d to a center c ∈ C with dist(d, c) = dist(d,C)(≤ 2); for each
center d ′ ∈ C(d,2) ∩ U with dist(d ′,C) ≤ 2 for some C ∈ C with C ∩ C(d,2) �=
∅, join d ′ to a center c ∈ C with dist(d ′, c) = dist(d ′,C)(≤ 2); all other centers in
C(d,2) ∩ U are joined to d . This is illustrated in Fig. 11, where the dotted lines are
edges in G but not in G′. Since G′ is a connected subgraph of G, it suffices to find a
desired set of paths P in G′. Suppose id is the integer such that d is of Type id with
respect to U . We distinguish two cases.

Case 1 t ≤ 5 − id . Denote the connected components of G′ − d by G1, . . . ,Gt .
Suppose, without loss of generality, that the first t1 components G1, . . . ,Gt1 are
connected to d through clusters C1, . . . ,Ct1 , and the last t2 = t − t1 components
Gt1+1, . . . ,Gt are connected to d through out-points dt1+1, . . . , dt . For each Gj , de-

note by U(j) = V (Gj ) ∩ U and V
(j)
i the set of centers in U(j) of Type i with respect

to U(j). By induction hypothesis, there is a set of paths Pj in Gj satisfying conditions
(1) to (3). In particular, condition (3) has the form

w(Pj ) ≤ 4w(V
(j)

0 ) + 3w(V
(j)

1 ) + 2w(V
(j)

2 ) + w(V
(j)

3 ). (1)

Note that for j ∈ {t1 + 1, . . . , t}, d is the only center in C(d,2) which is adjacent
with dj in G′, hence dj is the only center in U(j) which lies in C(d,2) ∩ C(dj ,2).

It follows that if dj ∈ Vi with respect to U , then dj ∈ V
(j)

i+1 with respect to U(j).
Summing up inequalities (1) over j = 1, . . . , t , taking the above consideration into
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account, we have

t∑

j=1

w(Pj ) ≤ 4w(V0) + 3w(V1) + 2w(V2) + w(V3) −
t∑

j=t1+1

w(dj ) − (4 − id )w(d).

Let P ′ be the set of paths {C1dCj }t1j=2 ∪ {C1ddjC
′
j }tj=t1+1, where for j ∈ {t1 +

1, . . . , t}, C′
j is a cluster with dist(dj ,C

′
j ) ≤ 2. Then

w(P ′) = (t − 1)w(d) +
t∑

j=t1+1

w(dj ).

Let P = (
⋃t

j=1 Pj ) ∪ P ′. Then

w(P ) ≤ 4w(V0) + 3w(V1) + 2w(V2) + w(V3) + (t + id − 5)w(d).

The result follows since t ≤ 5 − id in this case.

Case 2 t > 5 − id . In this case, there are two centers d ′ and d ′′ in C(d,2) which
are joined to d in G′, and ∠d ′dd ′′ < π/3. We claim that both d ′ and d ′′ are in U .
Otherwise, suppose d ′ ∈ C ∈ C , then by noting that dist(d ′, d ′′) < 2, it follows from
the construction of G′ that d ′′ should be joined to C instead of d , a contradiction.
Furthermore, one of ∠dd ′d ′′ and ∠dd ′′d ′ is greater than π/3, say ∠dd ′′d ′ > π/3. Let
G′′ be the subgraph of G′ by erasing the adjacency between centers in (C(d ′′,2) ∩
C(d ′,2)) \ C(d,2) and d ′′ (note that centers in this area remain their adjacency with
d ′, hence G′′ is still connected). Let G1 be the component of G′′ − d containing d ′′,
and G2 = G′′ − G1. For j = 1,2, denote by U(j) = V (Gj ) ∩ U , and V

(j)
i the set

of centers in U(j) of Type i with respect to U(j). Apply induction hypothesis to the
connected subgraph graph Gj , we have a set of paths Pj connecting the clusters in
Gj such that

w(Pj ) ≤ 4w(V
(j)

0 ) + 3w(V
(j)

1 ) + 2w(V
(j)

2 ) + w(V
(j)

3 ).

By the construction of G′′, we see that if d ′′ is of Type i in G, then d ′′ is of Type
i + 2 in G1. First, suppose d ′′ is not of Type 3. Then

w(P1) + w(P2) ≤ 4w(V0) + 3w(V1) + 2w(V2) + w(V3) − 2w(d ′′).

Let P = P1 ∪ P2 ∪ {Cdd ′′C′′}, where C is a cluster joined to d and C′′ is a cluster
joined to d ′′. Then P satisfies conditions (1), (2) and

w(P ) ≤ 4w(V0) + 3w(V1) + 2w(V2) + w(V3) − 2w(d ′′) + w(d) + w(d ′′).

Then the result follows since w(d) ≤ w(d ′′). If d ′′ is of Type 3, then d and d ′ are the
only centers adjacent with d ′′, and thus G1 is a singleton. Then the analysis is similar
to the above (but easier) by setting P = P1 ∪ {Cdd ′′}. �
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Fig. 12 A tight example of
Theorem 2

Theorem 2 Let D be a dominating set and U be the set of centers added to D

by Algorithm 2. Then w(U) ≤ 4w(OPT), where OPT is the weight of an optimum
solution to MWCDS.

Proof Let D∗ be an optimal solution. Taking U = D∗ in Lemma 4, we have a set
of paths P connecting the set of clusters of G[D], and w(P ) ≤ 4w(D∗). This set of
paths corresponds to a spanning subgraph of H . Since U is obtained from a minimum
spanning tree T of H , and w(U) is exactly w(T ) by the definition of w(e) for e ∈
E(H), we have w(U) ≤ w(P ). The result follows. �

The approximation ratio in Theorem 2 is tight in the following sense: Consider
the unit disk graph in Fig. 12, every disk has weight 1. Then the optimum solution to
WDS is the set of solid points, and the optimum solution to WCDS is the set of solid
points plus the middle one. But by the ‘spanning tree’ strategy in Algorithm 3, the
middle point is used exactly four times to connect different clusters.

Combining Theorems 1 and 2, we have

Theorem 3 Algorithms 1, 2, 3 together give an approximation algorithm to MWCDS
with performance ratio 10 + ε.

4 Conclusion

In our paper we give a (10 + ε)-approximation algorithm for Minimum Weight
Connected Dominating Set in Unit Disk Graph, which greatly improves the 89-
approximation algorithm given in (Ambühl et al. 2006). Our main strategy is to par-
tition the whole plane into squares, and form them into blocks. We compute MWDS
for each block firstly, and then combine them together. After that, by shifting strat-
egy, we avoid boundary influences and yield a (6 + ε)-approximation to MDS. Next,
we use an algorithm to add some disks into existing dominating set, such that they
can be connected. The approximation ratio of this step is 4, which is tight for using
‘spanning tree’ strategy. Hence, to reduce the whole approximation ratio, it may be
more promising to improve on the first part.



194 J Comb Optim (2009) 18: 179–194

References

Ambühl C, Erlebach T, Mihalák M, Nunkesser M (2006) Constant-factor approximation for minimum-
weight (connected) dominating sets in unit disk graphs. In: Proceedings of the 9th international
workshop on approximation algorithms for combinatorial optimization problems (APPROX 2006).
LNCS, vol 4110. Springer, Berlin, pp 3–14

Baker BS (1994) Approximation algorithms for NP-complete problems on planar graphs. J Assoc Comput
Mach 41(1):153–180

Bar-Yehuda R, Moran S (1984) On approximation problems related to the independent set and vertex cover
problem. Discrete Appl Math 9:1–10

Clark BN, Colbourn CJ, Johnson DS (1990) Unit disk graphs. Discrete Math 86:165–177
Dai WF, Gao M, Stojmenovic I (2002) On calculating power-aware connected dominating sets for efficient

routing in ad hoc wireless networks. J Commun Netw 4(1):59–70
Feige U (1996) A Threshold of lnn for approximating set cover. In: Proc. 28th ACM symposium on theory

of computing. ACM, New York, pp 314–318
Garey MR, Johnson DS (1979) Computers and intractability. In: A guide to the theory of NP completeness.

Freeman, New York
Guha S, Khuller S (1999) Improved methods for approximating node weighted Steiner trees and connected

dominating sets. Inf Comput 150(1):57–74
Hochbaum DS, Maass W (1985) Approximation schemes for covering and packing problems in image

processing and VLSI. J Assoc Comput Mach 32(1):130–136
Hunt HB III, Marathe MV, Radhakrishnan V, Ravi SS, Rosenkrantz DJ, Stearns RE (1998) NC-

approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J Algorithms
26(2):238–274

Lichtenstein D (1982) Planar formulae and their uses. SIAM J Comput 11(2):329–343
Marathe MV, Breu H, Hunt HB III, Ravi SS, Rosenkrantz DJ (1995) Simple heuristics for unit disk graphs.

Networks 25:59–68
Vazirani VV (2001) Approximation algorithms. Springer, Berlin
Wang Y, Li XY (2005) Distributed low-cost backbone formation for wireless ad hoc networks. In: Pro-

ceedings of the 6th ACM international symposium on mobile ad hoc networking and computing
(MobiHoc 2005), pp 2–13

Wu J, Li H (1999) On calculating connected dominating set for efficient routing in ad-hoc wireless net-
works. In: Proc. of the 3rd international workshop on discrete algorithms and methods for mobile
computing and commun, pp 7–14


	A better constant-factor approximation for weighted dominating set in unit disk graph
	Abstract
	Introduction
	Dominating set problem in general graphs
	Dominating set problem in unit disk graph
	Our result

	Computing minimum weight dominating set
	Partition
	MWDC in K xK squares
	Quadrangle case
	Triangle case

	MWDC for the whole region
	Performance ratio
	Phase 1
	Phase 2


	Connected dominating set
	Case 1
	Case 2

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


